USB Communication Device Class (COC)
Abstract Contfrol Model Library
for Analog Devices ADSP-SC594

User’s Guide Revision 1.02

Closed Loop Design, LLC

I support@cld-Lllc.com I

Table of Contents

(D o] =111 S OO OURTPPRPPPPR 3
INEFOAUCTION. ...ttt ettt 3
USB BaCKGIOUNG.........eiiiiiiiiie ettt ettt e e e sttt e e e e ettt e e e e s st e e e e et e e e e e ansbn e e e e e nnsbeeeeennbeeeeeas 3
CLD Library USB Enumeration FIOW Chart.............cooiiiiiiiiiiiiicieeee e 4
CLD Library Interrupt IN FIOW Chart............ooviiiiiiiiie e 6
CLD CDC Library Bulk OUT FIOW Chart.........ccooiuiiiiiiiiiiee e iee e enneee e 8
CLD CDC Library Bulk IN FIOW Chart..........c..coiiuiiiiiiiiiiieeiiiee e 9
CDC Abstract Control Model Background...............ouvviiiiieiiiiiieec e 10
CDC Notifications Interrupt IN ENAPOINT.........oooiiiiiiiiiiiiiee e 10
CDC Abstract Control Model Control Endpoint REQUESTSeeeiiviriiiieiiiieiiie e 11
=T oL T [T o 1= SRR 20
CLD SC594 CDC Library Scope and Intended USE..........coooueiieiiiiiieeiiiiiie e 20
CLD CDC Example V1.02 DESCHIPLION......cciuiieiiiiieiiiieeiitie ettt ettt e e 20
Running the EXampPIe PrOJECT..........cuviiiiieieee e st 20
CLD SC594 CDC LIBIANY AP ...ttt ettt eeareesneeeeeneennee e 22
ClA_SC594_CAC_TID_INTT.....eiietiie et 22
Cld _SC594 €AC_IID MAIN.......ciiiiiiiec e 33
cld_cdc_lib_receive_Serial_data.............oeeeiiieiieeiiiiiii e 34
cld_cdc_lib_transmit_Serial data............coueiiiiiiiiiii i 36
cld _cdc_lib_send_network coONNECLION STALEcoiiiiiiiiiiieee e 37
cld_cdc_lib_send _response_availabIe.............oeeeiiiiiiiiiiiiiie s 38
cld_cdc_lD_Send_Serial STALEcoiueiiiiiie it 39
cld _cdc_lib_resume_paused cONtrol tranSfer............coocuiiiiiiiei e 40
Cld I USD CONMNECT......co i 41
ClA_ HD_USD _dISCONNECT. ... e 41
ClA _tIME _125US TICK. .. eeiiieeiiiiiiiiiit et e e e e e e e e e s e e e e e e e s s e et b e e e aaeeeeeeeaaneees 41
Cld_USDO IS CAIDACK. ..ot e e e e e e e e e e e nees 42
(o [I (100 T =] S O PP P TP PR PPRRPPR 42
ClA _tIME _PASSEA MIS...eiiiiii ittt e e e e e e e s et e e e e e e s s s e bbb e e e aaeaeeeasaaneees 43
(o o IO € =T =] TS PSSR 43
(o] o IR € =T o =T o [TN PP OTPPR 44

[of (o I T TS = L Eo o =T oo L P PPRPRR 44

(o] o [LT o oo VIS o o) 0V (-] PSSR 45

Adding the CLD SC594 CDC Library to an Existing CrossCore Embedded Studio Project............... 46
User FIrmware COOE SNIPPETS.uueieeiiiiiie et e sttt et e e e st e e e st e e e s anbn e e e s nnnnbeee s 48
0 U oS RPSP 48

3= o 49

Disclaimer

This software is supplied "AS I1S" without any warranties, express, implied or statutory, including but not
limited to the implied warranties of fitness for purpose, satisfactory quality and non-infringement. Closed
Loop Design LLC extends you a royalty-free right to use, reproduce, and distribute executable files
created using this software for use with Analog Devices ADSP-SC5xx family processors only. Nothing
else gives you the right to use this software.

Introduction

The Closed Loop Design (CLD) CDC/ACM library createsa simplified interface for developinga USB
Communication Device Class (CDC) Abstract Control Model (ACM) Serial Emulation device using the
Analog Devices EV-SOMCRR-EZKIT and the EV-SC594-SOM System-on-Module boards. The CLD
SC594 CDC library also includes support for timer functions that facilitate creating timed events quickly
and easily. The library's User application interface is comprised of parameters used to customize the
library's functionality as well as callback functions used to notify the User application of events. These

parametersand functions are described in greater detail in the CLD SC594 CDC Library API section of
this document.

USB Background
The following is a very basic overview of some of the USB concepts that are necessary to use the CLD
SC594 CDC Library. However, itis still recommended that developers have at least a basic

understanding of the USB 2.0 protocol. The following are some resources to refer to when working with
USB, and CDC 1.2 protocols:

e The USB 2.0 Specification

e The USB CDC Class specification v1.2

e USB ina Nutshell: A free online wiki that explains USB concepts.
http://www.beyondlogic.org/usbnutshell/usb1.shtml

e "USB Complete” by Jan Axelson ISBN: 1931448086

USB is a polling based protocol where the Host initiates all transfers, all USB terminology is from the
Host's perspective. For example an 'IN'transfer is when data is sent from a Device to the Host, and an
'OUT transfer is when the Host sends datato a Device.

The USB 2.0 protocol defines a basic framework that devices must implement in order to work correctly.
This framework is defined in the Chapter 9 of the USB 2.0 protocol, and is often referred to as the USB
‘Chapter 9' functionality. Part of the Chapter 9 framework is standard USB requests that a USB Host uses
to control the Device. Another part of the Chapter 9 framework is the USB Descriptors. These USB
Descriptors are used to notify the Host of the Device's capabilities when the Device is attached. The USB
Host uses the descriptors and the Chapter 9 standard requests to configure the Device. This process is
called USB Enumeration. The CLD library includes support for the USB standard requestsand USB
Enumeration using some of the parameters specified by the User application when initializing the library.
These parameters are discussed in the cld_sc594_cdc_lib_init section of this document. The CLD library
facilitates USB enumeration and is Chapter 9 compliant without User Application intervention as shown
in the flow chart below. For additional information on USB Chapter 9 functionality or USB Enumeration
please refer to one of the USB resources listed above.

https://www.usb.org/document-library/usb-20-specification
https://www.usb.org/document-library/class-definitions-communication-devices-12
http://www.beyondlogic.org/usbnutshell/usb1.shtml

CLD Library USB Enumeration Flow Chart

‘ USB Cable Connected or USB Bus Reset

— :

Get Device Descriptor Request

Set USB Address

Get Device Descriptor Request

Get Configuration Descriptor Request

USB Enumeration

Set Configuration
(CLD library has 1 configuration)

Request String Descriptors

USB/External Event

USB Host Event

All USB data is transferred using Endpoints that act as a source or sink for data based on the endpoint's
direction (IN or OUT). The USB protocol defines four types of Endpoints, each of which has unique
characteristics that dictate how they are used. The four Endpoint types are: Control, Interrupt, Bulk and
Isochronous. Datathat is transmitted over USB is broken up into blocks of data called packets. For each
endpoint type there are restrictions on the allowed max packet size. The allowed max packet sizes also

vary based on the USB connection speed. Please refer to the USB 2.0 protocol for more information
about the max packet size supported by the four endpoint types.

The CLD SC594 CDC Library uses Control, Interrupt, and Bulk endpoints, these endpoint types will be
discussed in more detail below.

A Control Endpoint is the only bi-directional endpoint type, and is typically used for command and status
transfers. A Control Endpoint transfer is made up of three stages (Setup Stage, Data Stage, and Status
Stage). The Setup Stage sets the direction and size of the optional Data Stage. The Data Stage is where
any data is transferred between the Host and Device. The Status Stage gives the Device the opportunity
to report if an errorwas detected during the transfer. All USB Devicesare required to include a default
Control Endpoint at endpoint number 0, referred to as Endpoint 0. Endpoint 0 is used to implement all
the USB Protocol defined Chapter 9 framework and USB Enumeration. In the CLD library Endpoint O is
also used to handle the CDC requests. These requests are discussed in more detail in the CDC Abstract
Control Model Background sections of this document

Interrupt Endpoints are used to transfer blocks of data where data integrity and deterministic timing is
required. Deterministic timing is achieved by allowing the Device to specify a requested interval used by
the Host to initiate USB transfers, which gives the Device a guaranteed maximum time between
opportunitiesto transfer data. Interrupt Endpoints are particularly useful when the Device needsto report
to the Host when a change is detected without having to wait for the Host to ask for the information. This
is more efficient then requiring the host to repeatedly send Control Endpoint requests asking if anything
has changed.

The flow charts below give an overview of howthe CLD Library and the User firmware interact to
process Interrupt IN transfers.

CLD Library Interrupt IN Flow Chart

Wait for the USB Host to issue a USB IN Token on the
Interrupt IN endpoint

Interrupt IN token

USB Host Event

Bulk Endpoints are used to transfer large amounts of data where data integrity is critical, but does not
require deterministic timing. A characteristic of Bulk Endpoints is that they can fill USB bandwidth that
isn't used by the other endpoint types. This makes Bulk the lowest priority endpoint type, but it can also
be the fastest as long as the other endpoints don't saturate the USB Bus. An example of a devices that
uses Bulk endpoints is a Mass Storage Device (thumb drives). The CLD library includes a Bulk IN and
Bulk OUT endpoint, which are used to send and receive serial data with the USB Host, respectively.

The flow charts below give an overview of howthe CLD CLD SC594 CDC Library and the User
firmware interact to process Bulk OUT and Bulk IN transfers.

CLD CDC Library Bulk OUT Flow Chart

USB Host Event

Bulk OUT packet

CLD CDC Library Bulk IN Flow Chart

Wait for the USB Host to issue a USB IN Token on the Bulk
IN endpoint

Bulk IN token

USB Host Event

CDC Abstract Control Model Background

The USB Communication Device Class (CDC) Abstract Control Model (ACM) protocol isa USB
Standard Class protocol released by the USB IF committee. The Communication Device Class was
created to provide a standardized way for USB communication devices to interface with a computer, and
covers a wide range of communication devices. The CLD library implements an Abstract Control Model
Serial Emulation device, so the scope of this document is limited to the CDC ACM Serial Emulation
functionality.

A CDC device is comprised of two USB interfaces. The first interface uses the Communication Device
Class and includesa single Interrupt IN endpoint used to send Notifications to the host. The second
interface usesthe Data Interface Classand includes a Bulk IN and Bulk OUT endpoint, which are used to
transfer the serial emulation data with the USB Host.

CDC Notifications Interrupt IN Endpoint
The CDC protocol requires all devices to include an Interrupt IN endpoint which is used to send CDC
Notifications to the Host. For the CDC Abstract Control Model these Notifications include the Network

Connection, Response Available, and Serial State Notifications. These Notifications are discussed below:

Network Connection Notification
The Network Connection Notification is used to report if the network is connected or disconnected to the
Host.

Response Available Notification

The Response Available Notification is used to notify the Host that a protocol specific response is
available, which is retrieved by the Host using the Get Encapsulated Response control endpoint request
described in the CDC Abstract Control Model Control Endpoint Requests section of this document.

Serial State Notification

The Serial State Notification is similar to the interrupt status register of a UART, and is used to report the
serial link status to the Host. The table below showsthe data fields of the Serial State Notification. All of
the Serial State fields are active high, so a field is setto a '1' when it is active.

Field Description

bOverRun Received serial datawas received while processing the previously received data.

bParity A parity error has occurred.

bFraming A framing error has occurred
bRingSignal | The current state of the ring signal detection
bBreak The current state of the break detection.

bTxCarrier State of the transmission carrier. This correspondsto the RS-232 DSR signal.

bRxCarrier | State of the receive carrier detection. This signal corresponds to the RS-232 DCD signal.

Once the Serial State Notification has been sent the device will re-evaluate the above fields. For the
bTxCarrier and bRxCarrier the Serial State Notification is sent when these signals change. For the
remaining fields once the Serial State Notification has been sent their value is reset to zero, and will be
sentagain when the field issettoa 1"

10

CDC Abstract Control Model Control Endpoint Requests

The CDC Abstract Control Model defines a couple Control Endpoint requests that a CDC peripheral is
required to support as well as some optional Control Endpoint requests. The Control Endpoint requests
used by the CLD library are explained in the following sections, and include flow charts showing how the
CLD SC594 CDC Library and the User firmware interact to the Control Endpoint requests.

Additionally, the User firmware code snippets included at the end of this document provide a basic
framework for implementing the CDC control requests using the CLD library.

11

Send Encapsulated Command (required)

Send Encapsulated Command is a Control OUT request and is used by the Host to send protocol specific
data to the device.

CLD CDC Library Send Encapsulated Command Flow Chart

Send Encapsulated Data Setup Packet

USB Host Event

Send Encapsulated Command Data Stage

Send Encapsulated Command Status Stage

VI -

Get Encapsulated Command (required)

Get Encapsulated Command is a Control IN request used by the Host to request protocol specified data.

CLD CDC Library Get Encapsulated Command Flow Chart

USB Host Event

Get Encapsulated Response Setup Packet

Get Encapsulated R‘esponse Data Stage

Get Encapsulated Response Status Stage

TR —

Set Line Coding (optional)

The Set Line Coding Control OUT request is used by the Host configure the UART parameters of
emulated serial port. The Set Line Coding request includes the following line coding structure in the
Control OUT Data Phase.

typedef struct
{

unsigned long data terminal rate; /* CDC Data Terminal Rate 1in
bits per second. */
unsigned char num stop bits; /* CDC Number of stop bits

0 =1 stop bit
1 =1.5 stop bits
2 = 2 stop bits */

unsigned char parity; /* CDC Parity setting
0 = None
1 = 0dd
2 = Even
3 = Mark
4 = Space */
unsigned char num data bits; /* CDC number of data bits

(Only 5, 6, 7, 8 and 16
allowed) */
} CLD CDC Line Coding;

In responseto a Set Line Coding command the CDC device should implement the requested
configuration, or stall the endpoint if the request is invalid.

14

CLD CDC Library Set Line Coding Flow Chart

USB Host Event

Set Line Coding Setup Packet

Set Line Coding Data Phase

Set Line Coding Status Stage

T

Get Line Coding (optional)

The Get Line Coding Control IN request is used by the Host request current UART parameters of
emulated serial port. The Get Line Coding request includes line coding structure described in the Set
Line Coding section in the Control IN Data Phase.

CLD CDC Library Get Line Coding Flow Chart

Get Line Coding Setup Packet

USB Host Event

Get Line Coding Data Stage

.

Get Line Coding Status Stage

T

Set Control Line State (optional)

The Set Control Line State Control OUT request is used by the Host to set the value of the emulated serial

port RS-232 RTS and DTR control signals. The Set Control Line State request includes the following

control signal structure in the Control OUT Data Phase.

typedef struct
{
union
{
struct
{
unsigned short dte present : 1;

unsigned short activate carrier :

unsigned short reserved
} bits;
unsigned short state;
bous
} CLD CDC Control Line State;

1;

14;

/* Indicates to DCE if DTE 1is

/*

present or not.
This signal corresponds to
V.24 signal 108/2
and RS-232 signal DTR.

0 - Not Present

1 - Present */
Carrier control for half
duplex modems.
This signal corresponds to
V.24 signal 105 and RS-232
signal RTS.

0 - Deactivate carrier

1 - Activate carrier
The device ignores the
value of this bit when
operating in full duplex
mode. */

17

CLD CDC Library Set Control Line State Flow Chart

USB Host Event

Set Control Line State Setup Packet

Set Control Line State Status Stage

T I —

Send Break (optional)

The Send Break Control OUT request is used by the Host request the device to generate a RS-232 style

break for the specified duration (in milliseconds). If the duration is set to OXFFFF the device should

generate a break until a another Send Break command is received with a duration of 0.

CLD CDC Library Send Break Flow Chart

USB Host Event

Send Break Setup Packet

Send Break Status Stage

[19 L

Dependencies
In order to function properly, the CLD SC594 CDC Library requires the following resources:

e ULPI (8-PIN interface) compliant USB PHY which outputs a USB clock to the processor.

e The CLD library uses DMA for all USB transfers. Requiring all data transferred over USB to be
located in un-cached memory, and be 32-bitaligned. Including buffers used by the CLD library
which are located in an ".usb_lib_uncached" memory section. In order for the library to work
properly, the User must define the usb_lib_uncached section in their loader file and configure the
cache accordingly.

e The User firmware is responsible for enabling the USBC I/O pins in the CCES project Pin
Multiplexing project settings.

e The User firmware is responsible for configuring all other non-USB specific peripherals,
including clocks, power modes, etc.

CLD SC594 CDC Library Scope and Intended Use

The CLD SC594 CDC Library implements the CDC/ACM required functionality to implementa USB
CDC device, as well as providing time measurements functionality. The CLD library is designed to be
added to an existing User project, and as such only includes the functionality needed to implement the
above mentioned USB, and timer keeping features. All other aspects of SC594 processor configuration
must be implemented by the User code.

CLD CDC Example v1.02 Description
The CLD example project provided with the CLD SC594 CDC Library implements a CDC Abstract
Control model USB serial port echo of data received over USB.

Running the Example Project
1. With the example project was developed using the ADSP SC594 SOM and carrier board, and
toggles the LED connected to GPI10 port C pin 3 every 250 milliseconds to provide a visual
indicator the project is running.

2. Once the example project is running on the EZ Board connect a USB mini-b cable froma PC to
the “USB Phy” connector of the carrier board. Windows 10 will install its built-in CDC/ACM
driver, and the device will be listed asa USB Serial Device in the Device Manager as shown
below:

W ﬁ Ports (COM & LPT)
ﬁ PCI Express UART Port (COM1)
ﬁ PCI Express UART Port (COM2)

& USE Serial Device (COM13)

=1 Drint miiziiar

3. Using TeraTerm, or another serial terminal program, connect to the new serial port as shown
below and click New Open:

20

Tera Terrm: Serial port setup and connection

Port: COM15 w New open
Speed: 115200 e
Data; 8 hit ~ Cancel
Parity: none ~
Stop bits: 1 bit w Help
Elow control: none w

Transmit delay

0 msecfchar 0 msecfline

Device Friendly Name: USHB Serial Device [COM15]

Device Instance ID: USB\YID D64B&PID _0007&MI_00\621602
Device Manufacturer: Microsoft

Provider Name: Microsoft

Driver Date: 6-21-2006

Driver Yersion: 10.0.17763.3532

4. The example project will echo the data it received over USB prepended with “Lib Echo:” as
shown below:

COM15 - Tera Term VT
File Edit Setup Contrel Window Help

D e el T T2

u
o
P
1
d

CLD SC594 CDC Library API

The following CLD library API descriptions include callback functions that are called by the library
based on USB events. The following color code is used to identify if the callback function is called from
the USB interrupt service routine, or from mainline. The callback functions called from the USB
interrupt service routine are also italicized so they can be identified when printed in black and white.

Callback called from the mainline context

Callback called from the USB interrupt service routine

cld_sc594 cdc_lib_init
CLD_RV cld_sc594_cdc_lib_init (CLD_SC594 CDC_Lib Init Params * p lib params)
Initializes the CLD SC594 CDC Library.

Arguments

p_lib params Pointerto a CLD_SC594 CDC_Lib_Init_Paramsstructure that
has been initialized with the User Application specific data.

Return Value
This function returns the CLD_RV type which represents the status of the CLD library initialization
process. The CLD_RV type has the following values:

CLD_SUCCESS The library was initialized successfully
CLD_FAIL There was a problem initializing the library
CLD_ONGOING The library initialization is being processed
Details

The cld_sc594 cdc_lib_init function is called as part of the device initialization and must be repeatedly
called until the function returns CLD_SUCCESS or CLD_FAIL. If CLD_FAIL is returned the library
will output an error message identifying the cause of the failure using the fp_cld_lib_status function if
defined by the User application. Once the library has been initialized successfully the main program loop
can start.

The CLD_SC594 CDC_Lib_Init_Params structure is described below:

typedef struct

{
unsigned short vendor id;
unsigned short product id;
unsigned char usb bus max power
unsigned short device descriptor bcdDevice
unsigned char phy hs timeout calibration;
unsigned char phy fs timeout calibration;
CLD_Boolean phy delay req after ulip chirp cmd;

CLD RV (*fp init usb phy) (void);

CLD Serial Data Bulk Endpoint Params * p serial data rx endpoint params;

22

CLD Serial Data Bulk Endpoint Params * p serial data tx endpoint params;

CLD CDC Notification Endpoint Params

* p notification endpoint params;

CLD_USB_Transfer Request_Return Type (*fp cdc_cmd send encapsulated cmd)

(CLD USB Transfer Params * p transfer data);

CLD _USB_Transfer Request Return Type (*fp cdc cmd get encapsulated resp)

(CLD USB Transfer Params * p transfer data);

CLD_USB _Data Received Return Type (*fp cdc cmd set line coding)

(CLD_CDC_Line Coding * p line coding);

CLD_RV (*fp cdc cmd get line coding) (CLD _CDC Line Coding *

p_line coding);

CLD_USB_Data Received Return_ Type (*fp cdc cmd set control line state)

(CLD _CDC Control Line State * p control line state);

CLD_USB_Data_ Received Return_Type (*fp cdc_cmd send break) (unsigned

short duration);

unsigned char support cdc network connection;
unsigned short cdc class bcd version;

unsigned char

const char
const char
const char
const char
const char
const char

* ok F F * *

cdc_class control protocol code;

p_usb _string manufacturer;

p_usb string product;

p_usb _string serial number;

p_usb _string configuration;

p_usb string communication class_interface;
p_usb string data class_interface;

unsigned char user string descriptor table num entries;
CLD CDC Lib User String Descriptors *

p_user string descriptor table;

unsigned short usb string language id;

void (*fp cld usb event callback) (CLD USB Event event);

void (*fp cld lib status) (unsigned short status code,

void * p additional data,
unsigned short additional data size);

} CLD_SC594 CDC Lib Init Params;

A description of the CLD_SC594_CDC_Lib_Init_Params structure elements is included below:

Structure Element

Description

vendor_id

The 16-bit USB vendorID thatis returned to the USB Host in the USB
Device Descriptor.

USB Vendor ID's areassigned by the USB-IF and can be purchased
through their website (www.usb.org).

23

product_id

The 16-bit product ID that s returned to the USB Hostin the USB Device
Descriptor.

usb_bus_max_power

USB Configuration Descriptor bMaxPower value (0 = self-powered).
Refer to the USB 2.0 protocolsection 9.6.3.

device_descriptor_bcd_device

USB Device Descriptor bcdDevice value.
Refer to the USB 2.0 protocolsection 9.6.1.

phy_hs_timeout_calibration

High Speed USB timeout PHY calibration value See ADSP-SC59x
Hw Reference Manual bits 2:0 of the USBC_CFG register

phy_fs_timeout_calibration

High Speed USB timeout PHY calibration value See ADSP-SC59x
Hw Reference Manual bits 2:0 of the USBC CFG register

fp_init_usb_phy

User defined function used to initialize and reset the USB Phy

The fp_init_usb_phy functionreturns the CLD_RV type, which has
the following values:

Return Value Description

CLD_ONGOING Results in this function getting
additional runtime.

CLD_SUCCESS USB Phy initialized
successfully.

CLD_FAIL Phy initialization failed, causes
USB library initialization
failure.

p_serial_data_rx_endpoint_params

Pointer to a CLD_Serial_Data Bulk_Endpoint_Params
structure that describes how the Bulk OUT endpoint should be
configured. The CLD_Serial_Data_Bulk_Endpoint_Params
structure contains the following elements:

Structure Element Description

endpoint_num Sets the USB endpoint number
of the Bulk endpoint. The
endpoint number must be
within the following range:

1 <endpoint num <12. Any
other endpoint number will
resultin the
cld_sc594 cdc lib init
function returning CLD FAIL
max_packet_size full_speed | Setsthe Bulk endpoint's max
packet size when operating at
Full Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8, 16, 32, and 64 bytes.
max_packet_size_high_speed | Setsthe Bulk endpoint's max
packet size when operating at
High Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8,16,32,64and 512 bytes.

p_serial_data_tx_endpoint_params

Pointer to a CLD_Serial_Data_Bulk_Endpoint_Params
structure that describes how the Bulk IN endpoint should be
configured. The CLD_Serial_Data_Bulk_Endpoint_Params
structure contains the following elements:

Structure Element

Description

endpoint_num

Sets the USB endpoint number
of the Bulk endpoint. The
endpoint number must be
within the following range:

1 <endpoint num < 12. Any
other endpoint number will
resultin the
cld_sc594 cdc _lib_init
functionreturning CLD_FAIL

max_packet_size full_speed

Sets the Bulk endpoint's max
packet size when operating at
Full Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8,16, 32, and 64 bytes.

max_packet_size_high_speed

Sets the Bulk endpoint's max
packet size when operating at
High Speed. The valid Bulk
endpoint max packet sizes are
as follows:

8,16,32, 64and 512 bytes.

p_notification_endpoint_params

Pointer to a CLD_CDC_Notification_Endpoint_Params
structure that describes how the Interrupt IN endpoint should be
configured. The CLD_CDC_Notification_Endpoint_Params
structure contains the following elements:

Structure Element

Description

endpoint_num

Sets the USB endpoint
number of the Interrupt
endpoint. The endpoint
number must be within the
following range:

1 <endpoint num <12. Any
other endpoint number will
resultin the

cld_sc594 cdc_lib_init
function returning
CLD_FAIL

max_packet_size full_speed

Sets the Interrupt endpoint's
max packet size when
operating at Full Speed. The
maximum max packet size is
64 bytes.

polling interval full speed

Full-Speed polling interval in

the USB Endpoint
Descriptor. (See USB 2.0
section 9.6.6)

max_packet_size_high_speed

Sets the Interrupt endpoint's
max packet size when
operating at High Speed.
The maximum max packet
size

1024 bytes.

polling_interval_high_speed

High-Speed polling interval
in the USB Endpoint
Descriptor. (See USB 2.0
section 9.6.6)

fp_cdc_cmd_send_encapsulated_cmd

Pointer to the function that is called whena CDC Send

Encapsulated Command request is received. This function a pointer

to the CLD_USB_Transfer_Paramsstructure ('p_transfer_data') as

its parameters.

The following CLD_USB_ Transfer_Params structure elements are
used to processed a Send Encapsulated Command transfer:

Structure Element

Description

num_bytes

The number of bytes from
the Setup Packet wLength
field, which is the number
of bytes that will be
transferred to p_data_buffer
before calling the
fp_usb_out_transfer_
complete callback function.

p_data_buffer

Pointer to the data buffer to
store the Send Encapsulated
Commanddata. The size of
the buffershould be greater
than or equal to the value in
num bytes.

fp_usb_out_transfer_complete

Function called when
num_bytes of data has been
written to the p_data_buffer
memory.

fp_transfer_aborted_callback

Function called if thereis a
problem receiving the data,
or if the transfer is
interrupted.

transfer_timeout_ms

Not used for Control
Requests since the Host has
the ability to interrupt any
Control transfer.

The fp cdc cmd send encapsulated cmd function returns the

CLD_USB_Transfer_Request_Return_Type, which has the
following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD library that
the Send Encapsulated
Command data should be
accepted using the

p transfer datavalues.
CLD_USB_TRANSFER_PAUSE Requests that the CLD
library pause the Set Report
transfer. This causes the
Control Endpoint to be
nak'ed until the transfer is
resumed by calling
cld_cdc_lib_resume_
paused control transfer.
CLD_USB_TRANSFER_DISCARD Requests thatthe CLD
library discard the number of
bytes specified in
p_transfer_params->
num_bytes. In this casethe
library accepts the Send
Encapsulated Command
from the USB Host but
discards the data. This is
similar to the concepts of
frame dropping in
audio/video applications.
CLD_USB_TRANSFER_STALL This notifies the CLD library
that there is an error and the
request should be stalled.

fp_cdc_cmd_get_encapsulated_resp | Pointer to the function that is called when a CDC Get Encapsulated
Response request is received. This function takes a pointer to the
CLD_USB_Transfer_Params structure ('p_transfer_data’) as its
parameters.

The following CLD_USB_Transfer_Params structure elements are
used to processed a Get Encapsulated Response request:

Structure Element Description

num_bytes The number of bytes from
the Setup Packet wLength
field.

p_data_buffer Pointer to the data buffer to

source the Get Encapsulated
Response data. The size of
the buffershould be greater
than or equal to the value in
num_bytes.

fp_usb in_transfer complete [Function called when Get

Encapsulated Response data
has been transferred to the
Host.

fp_transfer_aborted_callback | Function called if thereis a
problem transferring the data,
or if the transfer is
interrupted
transfer_timeout_ms Not used for Control
Requests since the Host has
the ability to interrupt any
Control transfer.

The fp_cdc_cmd_get_encapsulated_resp function returns the
CLD_USB_Transfer_Request_Return_Type, which has the
following values:

Return Value Description
CLD_USB_TRANSFER_ACCEPT Notifies the CLD library that
the Get Encapsulated

Response data should be
transferred using the
p_transfer datavalues.
CLD_USB_TRANSFER_PAUSE Requests thatthe CLD
library pause the Get
Encapsulated Response
transfer. This causes the
Control Endpoint to be
nak'ed until the transfer is
resumed by calling
cld_cdc_lib_resume_
paused control transfer.
CLD_USB_TRANSFER_DISCARD | Requests that the CLD
library to return a zero length
packet in response to the Get
Encapsulated Response
request.
CLD_USB_TRANSFER_STALL This notifies the CLD library
that there is an error and the
request should be stalled.

fp_cdc_cmd_set_line_coding

Pointer to the function that is called whena CDC Set Line Coding
request is received. This function takes a pointer to the Host
specified CLD_CDC _Line_Coding structure (‘p_line_coding’) as its
parameters.

The following CLD_CDC_Line_Coding structure elements are
used to processed a Set Line Coding request:

Structure Element Description

data_terminal_rate Serial baud rate in bits per
second.

num_stop_bits CDC Number of stop bits.
0 = 1 stop bit

1 =1.5 stop bits

2 = 2 stop bits.

parity CDC parity setting

0= None

1=0dd

2 =Even

3 = Mark

4 = Space

CDC Number of data bits
(only5,6,7,8and 16 are

num_data_bits

valid).

The fp_cdc_cmd_set_line_coding function returnsthe
CLD_USB_Data Received Return_Type, which hasthe following
values:

Return Value
CLD_USB_DATA_GOOD

Description

Notifies the CLD library that
the request is valid.

Notifies the CLD library that
the request is invalid, and
should be stalled.

CLD_USB_DATA_BAD_STALL

fp_cdc_cmd_get _line_coding

Pointer to the function thatis called when a CDC Get Line Coding request
is received. This functiontakesa pointerto CLD_CDC_Line_Coding
structure (p_line_coding’) as its parameters. The User firmware should set
the p_line_coding structure values based on its active settings.

The following CLD_CDC_Line_Coding structure elements are used to
rocessed a Get Line Coding request:

Structure Element
data_terminal_rate

Description

Serial baud rate in bits per
second.

CDC Number of stop bits.
0 =1 stop bit

1= 1.5 stop bits

2 = 2 stop bits.

parity CDC parity setting

0 = None

1=0dd

2 =Even

3 = Mark

4 = Space

CDC Number of data bits
(only 5, 6,7, 8and 16 are valid).

num_stop_bits

num_data_bits

The fp_cdc_cmd_get_line_coding function returns CLD_RV, which has
the following values:
Return Value
CLD_SUCCESS

Description

Notifies the CLD library that
the requestis valid and the
p_line_coding value should be
returned to the Host.

Notifies the CLD library that
the requestis invalid, and

CLD_FAIL

| | should be stalled. |

fp_cdc_cmd_set_control_line_state

Pointer to the function thatis called when a CDC Set Control Line State
request is received. This function takesa pointer to the Host specified
CLD_CDC_Control_Line_State structure (p_control_line_state’) asits
parameters.

The following CLD_CDC_Control_Line_State structure elements are used
to processed a Set Control Line State request:

Structure Element Description

dte_present Controls if the DTE is present or
not. This corresponds to the RS-
232 DTR signal.

0 = Not Present

1 = Present

activate_carrier Carrier control used in half
duplex serial links. This signal
corresponds to the RS-232 RTS
signal.

0 = Disabled

1 = Active

The fp_cdc_cmd_set_control_line_state function returnsthe
CLD USB_Data_Received Return_ Type,which hasthe following values:
Return Value Description
CLD_USB_DATA _GOOD Notifies the CLD library that
the requestis valid.
CLD_USB_DATA BAD_STALL [Notifies the CLD library that
the requestis invalid, and
should be stalled.

fp_cdc_cmd_send _break

Pointer to the function that is called whena CDC Send Break
request is received. This function takes the host specified duration
in milliseconds (‘duration’) as its parameters.

The fp_cdc_cmd_send_break function returns the
CLD_USB_Data Received_Return_Type, which has the following
values:

Return Value Description

CLD_USB_DATA_GOOD Notifies the CLD library that
the request is valid.

CLD_USB_DATA_BAD_STALL Notifies the CLD library that
the request is invalid, and
should be stalled.

support_cdc_network _connection

Tells the CLD library if the User firmware supports the CDC
Network Connection Notification.

0 = Not supported

1 = Supported

cdc_class_bcd_version

CDC Class Version in BCD. Returned in the CDC Header
Functional Descriptor's bcdCDC field. (refer to the CDC
specification v1.2 section 5.3.2.1).

cdc_class_control_protocol_code

Value used in the CDC interface descriptor's binterfaceProtocol
field. The valid CDC Protocol codes are defined in the CDC v.1.2
specificationin Table 5 on page 13.

p_usb_string_manufacturer

Pointer to the null-terminated string. This string is used by the
library to generate the Manufacturer USB String Descriptor. If the
Manufacturer String Descriptor is not used set

p_usb string manufacturerto CLD NULL.

p_usb_string_product

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Product USB String Descriptor. If the
Product String Descriptor is not used set p_usb_string_product to
CLD NULL.

p_usb_string_serial_number

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Serial Number USB String Descriptor. If the
Serial Number String Descriptor is not used set

p_usb string serial numberto CLD NULL.

p_usb_string_configuration

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Configuration USB String Descriptor. If the
Configuration String Descriptor is not used set

p_usbh string configurationto CLD NULL.

p_usb_string_communication_clas
s_interface

Pointer to the null-terminated string. This string is used by the CLD
library to generate the CDC Interface USB String Descriptor. If the
CDC Interface String Descriptor is not used set

p_usb string_communication class interface to CLD NULL.

p_usb_string_data_class_interface

Pointer to the null-terminated string. This string is used by the CLD
library to generate the Data Class Interface USB String Descriptor.
If the Data Interface String Descriptor is not used set

p_usb string data class interfaceto CLD NULL.

user_string_descriptor_table_num
_entries

The number of entries in the array of
CLD_CDC_Lib_User_String_Descriptors structures addressed by
p_user_string_descriptor_table. Setto O if

p_user string descriptor table issetto CLD NULL.

p_user_string_descriptor_table

Pointer to an array of CLD_CDC_Lib_User_
String_Descriptors structures used to define any custom User
defined USB string descriptors. This table is used to define any
USB String descriptors for any string descriptor indexes that are
used in the Terminal or Unit Descriptors.

Setto CLD_NULL is not used.

The CLD_CDC_Lib_User_String_Descriptors structure elements
are explained below:

Structure Element
string_index

Description

The USB String Descriptor
index for the string. The
string_index value is set to the
index specified in the
Terminal or Unit Descriptor
associated with this string.
Pointer to a null terminated
string.

p_string

usb_string_language_id

16-bit USB String Descriptor Language ID Code as defined in the
USB Language Identifiers (LANGIDs) document
(www.ush.org/developers/docs/USB LANGIDs.pdf).

0x0409 = English (United States)

fp_cld_usb_event_callback

Function thatis called when one of the following USB eventsoccurs. This
function hasasingle CLD_USB_Event parameter.

Note: This callback can be called from the USB interrupt or mainline
contextdepending on which USB event was detected. The
CLD_USB_Event values in thetable below are highlighted to show the
contextthe callback is called for each event.

The CLD_USB_Event has the following values:

Return Value Description
CLD_USB_CABLE_CONNECTED USB Cable Connected.
CLD_USB_CABLE_DISCONNECTED USB Cable
Disconnected
CLD_USB_ENUMERATED_CONFIGURED_ | USB device enumerated
= (USB Configuration set
to a non-zero value) at
Full-Speed
CLD_USB_ENUMERATED_CONFIGURED_ | USB device enumerated
Ak (USB Configuration set
to anon-zero value) at
High-Speed
CLD_USB_UN_CONFIGURED USB Configu ration set
to 0
CLD_USB_BUS_RESET USB Bus reset received

Note: Set to CLD_NULL if not required by application

fp_cld_lib_status

Pointer to the function thatis called when the CLD library hasa statusto
report. This function hasthe following parameters:

Parameter Description

status_code 16-bit statuscode. Ifthe most
significant bit is a '1' the status
being reported is an Error.

p_additional_data Pointer to additionaldata
included with the status.
additional_data_size The numberof bytesin the

specified additionaldata.

If the User plans on processing outside of the fp_cld_lib_status
function they will need to copy the additional data to a User buffer.

cld_sc594 cdc_lib_main
void cld cdc_lib main (void)
CLD SC594 CDC Library mainline function

Arguments
None

Return Value
None.

Details
The cld_sc594 _cdc_lib_main function is the CLD library mainline function that must be called in every
iteration of the main program loop in order for the library to function properly.

33

cld_cdc_lib_receive_serial_data

CLD USB Data Receive Return Type cld cdc_lib receive_serial data
(CLD _USB Transfer Params * p transfer data)

CLD CDC Library function used to receive data over the Bulk OUT endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_ Transfer_Params structure
used to describe the data being received.

Return Value

This function returns the CLD_USB_Data_Receive_Return_Type type which reports if the Isochronous
OUT transmission has been configured. CLD_USB_Data Receive_Return_Type has the following
values:

CLD_USB_RECEIVE_SUCCESSFUL The library has configured the requested Bulk OUT
transfer.
CLD_USB_RECEIVE_FAILED The library failed to configure the requested Bulk

OUT transfer. This will happen if the Bulk OUT
endpoint is busy, or if the p_transfer_data->
data bufferissetto CLD NULL

CLD _USB_RECEIVE FAILED MISALIGNED The requested USB transfer failed because the
specified memory locationisn't 32-bit aligned.
CLD_USB_RECEIVE_FAILED NUM_BYTES The transfer failed because the num_bytes field of

the passed CLD_USB_Transfer_Params structure
was not a multiple of the endpoint max packet size.
Note: the max packet size is determined based on
the values specified by the User, and the
enumerated USB speed.

Details

The cld_cdc _lib_receive_serial_data enables the Bulk OUT endpoint to receive the data specified by the
p_transfer_data parameter from the USB Host. This function should be called when the device has been
enumerated/configured, in fp_usb_out_transfer_complete, and in fp_transfer_aborted _callback.

The CLD_USB_Transfer_Params structure is described below.

typedef struct
{
unsigned long num bytes;
unsigned char * p data buffer;
union
{
CLD USB Data Received Return Type (*fp usb out transfer complete) (unsigned
int num bytes);
void (*fp usb in transfer complete) (void);
}callback;
void (*fp transfer aborted callback) (void);
CLD Time transfer timeout ms;
} CLD _USB Transfer Params;

34

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element

Description

num_bytes

The number of bytes to transfer to the USB Host. Once the
specified number of bytes has been received the
fp_usb in_transfer complete callback function will be called.

p_data_buffer

Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num bytes.

fp_usb_out_transfer_complete

Function called when the specified data has been received, or the
Host send a short packet (less than the max packet size) signaling
the end of a transfer. This function is passed the number of
received bytes.

fp_usb in transfer complete

Not used for OUT transfers.

fp_transfer_aborted_callback

Function called if there is a problem receiving the data to the USB
Host. This function canbe setto CLD_NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms

Bulk OUT transfer timeout in milliseconds. If the Bulk OUT
transfer takes longer then this timeout the transfer is aborted and the
fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_cdc_lib_transmit_serial_data

CLD USB Data Transmit Return Type cld cdc_lib transmit serial data
(CLD _USB Transfer Params * p transfer data)

CLD CDC Library function used to send serial over the Bulk IN endpoint.

Arguments

p_transfer_data Pointer to a CLD_USB_ Transfer_Params structure
used to describe the data being transmitted.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Bulk IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT SUCCESSFUL The library has started the requested Bulk IN
transfer.
CLD_USB_TRANSMIT FAILED The library failed to start the requested Bulk IN

transfer. This will happen if the Bulk IN endpoint
is busy, or if the p_transfer_data-> data_buffer is
setto NULL

CLD_USB_TRANSMIT FAILED MISALIGNED The requested USB transfer failed because the
specified memory location isn't 32-bit aligned.

Details
The cld_cdc _lib_transmit_serial_data function transmits the data specified by the p_transfer_data
parameter to the USB Host using the Device's Bulk IN endpoint.

The CLD_USB_Transfer_Params structure is described below.

typedef struct
{
unsigned long num bytes;
unsigned char * p data buffer;
union
{
CLD USB Data Received Return Type (*fp usb out transfer complete) (void);
void (*fp usb in transfer complete) (void);
}Jcallback;
void (*fp transfer aborted callback) (void);
void transfer timeout ms;
} CLD_USB Transfer Params;

A description of the CLD_USB_Transfer_Params structure elements is included below:

Structure Element Description

num_bytes The number of bytes to transferto the USB Host. Once the
specified number of bytes have been transmitted the
usb _in transfer complete callback function will be called.

p_data_buffer Pointer to the data to be sent to the USB Host. This buffer must
include the number of bytes specified by num_bytes.

36

fp _usb out transfer complete Not Used for Bulk IN transfers

fp_usb_in_transfer_complete Function called when the specified data has been transmitted to the
USB host. This function pointer can besetto CLD_NULL if the
User application doesn't want to be notified when the data has been
transferred.

fp_transfer_aborted_callback Function called if there is a problem transmitting the data to the
USB Host. This function can besetto CLD_NULL if the User
application doesn't want to be notified if a problem occurs.

transfer_timeout_ms USB transfer timeout in milliseconds. If the Bulk IN transfer takes
longer then this timeout the transfer is aborted and the
fp_transfer_aborted_callback is called.

Setting the timeout to 0 disables the timeout

cld_cdc_lib_send_network_connection_state

CLD USB Data Transmit Return Type cld_cdc_lib_send network connection_state
(CLD_CDC_Lib Network Connection State state)

CLD CDC Library function used to send the CDC Network Connection Notification using the Interrupt
IN endpoint.

Arguments

state | The Network Connection state to send to the Host. |

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT SUCCESSFUL The library has started the requested Interrupt IN
transfer.
CLD_USB_TRANSMIT FAILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN
endpoint is busy, or if the p_transfer_data->
data_bufferis setto NULL

Details
The cld_cdc_lib_send network_connection_state function transmits the network connection state
specified by the state parameter to the USB Host using the Device's Interrupt IN endpoint.

The CLD_CDC_Lib_Network_Connection_State enum values are listed below.

Enum Element Description

CLD_CDC_NETWORK_DISCONNECTED | The CDC Network is disconnected.

CLD_CDC_NETWORK_CONNECTED The CDC Network is connected.

cld_cdc_lib_send response_available

CLD USB Data Transmit Return Type cld cdc_lib send response_available
(CLD_CDC Lib Network Connection State state)

CLD CDC Library function used to send the CDC Response Available Notification using the Interrupt IN
endpoint.

Arguments
None.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following
values:

CLD_USB_TRANSMIT_ SUCCESSFUL The library has started the requested Interrupt IN
transfer.
CLD_USB_TRANSMIT FAILED The library failed to start the requested Interrupt IN

transfer. This will happen if the Interrupt IN
endpointis busy, or if the p_transfer_data->
data_bufferissetto NULL

Details

The cld_cdc _lib_send_response_available function transmits the CDC Response Available Notification to
the USB Host using the Device's Interrupt IN endpoint. The Host can then request the response data using
a Send Encapsulated Response Control endpoint request.

38

cld_cdc_lib_send_serial_state

CLD USB Data Transmit Return Type cld _cdc_lib send serial state
(CLD CDC _Serial State * p serial state)

CLD CDC Library function used to send the CDC Serial State Notification using the Interrupt IN

endpoint.

Arguments

p_serial state

Pointerto a CLD_CDC_Serial_State structure used
to report the current state of the emulated serial
port to the USB Host.

Return Value

This function returns the CLD_USB_Data_Transmit_Return_Type type which reports if the Interrupt IN
transmission request was started. The CLD_USB_Data_Transmit_Return_Type type has the following

values:

CLD_USB_TRANSMIT SUCCESSFUL

The library has started the requested Interrupt IN
transfer.

CLD_USB_TRANSMIT FAILED

The library failed to start the requested Interrupt IN
transfer. This will happen if the Interrupt IN
endpointis busy, or if the p_transfer_data->
data_bufferis setto NULL

Details

The cld_cdc_lib_send_serial_data function transmits the current CDC Serial State specified by the
p_serial_state parameter to the USB Host using the Device's Interrupt IN endpoint.

The CLD CLD_CDC_Serial_State structure is described below.

typedef struct
{
union
{
struct
{
short
short
short
short
short
short
short
short

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} bits;
unsigned short state;

boug
} CLD CDC Serial State;

rx_carrier
tx carrier
break detect
ring signal

parity error

reserved

framing error

rx data overrun

N N N e e
e oNe e Ne Ne Ne N

A description of the CLD_CDC_Serial_State structure elements is included below:

39

Structure Element Description

rx_carrier State of receiver carrier detection mechanism of device. Thissignal
corresponds to V.24 signal 109 and RS-232 signal DCD.

tx_carrier State of transmission carrier. This signal corresponds to V.24 signal
106 and RS-232 signal DSR.

break detect State of break detection mechanism of the device.

ring_signal State of ring signal detection of the device.

framing_error A framing error has occurred.

parity error A parity error has occurred.

rx_data_overrun Received data has been discarded due to overrun in the device.

Once the Serial State Notification has been sent the device re-evaluates the above fields. For the
tx_carrier and rx_carrier the Serial State Notification is sent when these signals change. For the
remaining fields once the Serial State Notification has been sent their value is reset to zero, and will be
sent to the Host again when the field issettoa'1".

cld_cdc_lib_resume_paused_control_transfer

void cld _cdc_lib resume_paused control_transfer (void)

CLD library function used to resume a paused Control endpoint transfer.

Arguments
None

Return Value
None.

Details

The cld_cdc lib_resume_paused_control_transfer function is used to resume a Control transfer which

\NaSanSGdbythefp_cdc_cmd_send_encapsulated_cmd, or
fp cdc _cmd get encapsulated resp

functionreturning CLD_USB_TRANSFER_PAUSE. When called the cld_cdc
lib_resume_paused_control_transfer function will call the User application’s

fp cdc cmd send encapsulated cmd, Of fp cdc cmd get encapsulated resp function
passingthe CLD_USB_Transfer_Params of the original paused transfer. The User function can then
chose to accept, discard, or stall the Control endpoint request.

40

cld_lib_usb_connect

void cld 1lib usb connect (void)

CLD Library function used to connect to the USB Host.

Return Value
None.

Details
The cld_lib_usb_connect function is called after the CLD library has been initialized to connect the USB
device to the Host.

cld_lib_usb_disconnect

void cld_1lib usb_disconnect (void)

CLD library function used to disconnect from the USB Host.

Return Value
None.

Details
The cld_lib_usb_disconnect function is called after the CLD library has been initialized to disconnect the
USB device to the Host.

cld_time_125us_tick

void cld_time_125us_tick (void)

CLD library timer function that should be called once per 125 microseconds.

Arguments
None

Return Value
None.

Details
This function should be called once every 125 microseconds in order to the CLD to processed periodic
events.

41

cld_usbO isr_callback

void cld usb0_isr callback (void)

CLD library USB interrupt service routines

Arguments
None

Return Value
None.

Details
These USB ISR functions should be called from the corresponding USB Port Interrupt Service Routines
as shown in the CLD provided example projects.

cld_time_get

CLD Time cld_time_get (void)

CLD library function used to get the current CLD time in milliseconds.

Arguments
None

Return Value
The current CLD library time.

Details

The cld_time_get function is used in conjunction with the cld_time_passed_ms function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls in
milliseconds.

42

cld_time_passed_ms
CLD Time cld_time passed ms (CLD Time time)
CLD library function used to measure the amount of time that has passed in milliseconds.

Arguments

time A CLD_Time valuereturned by acld_time_get
function call.

Return Value
The number of milliseconds that have passed since the cld_time_get function call that returned the
CLD_Time value passed to the cld_time_passed_ms function.

Details

The cld_time_passed_ms function is used in conjunction with the cld_time_get function to measure how
much time has passed between the cld_time_get and the cld_time_passed_ms function calls in
milliseconds.

cld_time_get_125us

CLD Time cld_time get 125us (void)

CLD library function used to get the current CLD time in 125 microsecond increments.

Arguments
None

Return Value
The current CLD library time.

Details

The cld_time_get_125us function is used in conjunction with the cld_time_passed_125us function to
measure how much time has passed between the cld_time_get_125us and the cld_time_passed_125us
function callsin 125 microsecond increments.

43

cld_time_passed_125us

CLD Time cld_time passed 125us (CLD Time time)

CLD library function used to measure the amount of time that has passed in 125 microsecond increments.

Arguments

time A CLD_Time valuereturned by a
cld time get 125us function call.

Return Value
The number of 125microsecond increments that have passed since the cld_time_get 125us function call
that returned the CLD_Time value passed to the cld_time_passed_125us function.

Details

The cld_time_passed_125us function is used in conjunction with the cld_time_get_125us function to
measure how much time has passed between the cld_time_get 125us and the cld_time_passed 125us
function callsin 125 microsecond increments.

cld_lib_status_decode
char * cld lib status_decode (unsigned short status cod,

void * p additional data,
unsigned short additional data size)

CLD Library function that returns a NULL terminated string describing the status passed to the function.

Arguments

status_code 16-bit status code returned by the CLD library.
Note: If the most significant bitis a1’ the statusis
an error.

p_additional data Pointer to the additional data returned by the CLD
library (if any).

additional_data_size Size of the additional datareturned by the CLD
library.

Return Value
This function returns a decoded Null terminated ASCII string.

Details

The cld_lib_status_decode function can be used to generate an ASCII string which describesthe CLD
library status passed to the function. The resulting string can be used by the User to determine the
meaning of the status codes returned by the CLD library.

44

cld_lib_access _usb_phy reg
CLD RV cld lib access_usb phy reg (CLD USB PHY Access Params * p params)
CLD Library function used to read or write the USB phy registers.

Arguments

p_params Pointer to the CLD_USB_PHY_Access_Params
structure describing the phy access.

Return Value

CLD_SUCCESS — USB phy access complete.

CLD_ONGOING - USB phy access in progress, continue calling cld_lib_access _usb_phy_reg until it
returns CLD_SUCCESS or CLD_FAIL.

CLD_FAIL — Error occurred while accessing the phy.

Details
The cld_lib_access_usb_phy reg function performsthe USB phy access described by the p_params
parameter.

The CLD_USB_PHY_Access_Params structure is described below.

typedef struct

{
CLD Boolean write;
unsigned char reg addr;
unsigned char v _ctrl;
unsigned char reg data;

} CLD_USB_PHY Access Params;

A description of the CLD_USB_PHY _Access_Params structure elements is included below:

Structure Element Description

write TRUE = register write, FALSE = register read

reg_addr Address of the USB phy register being accessed

v_ctrl ULPI Vendor Control Register Address

reg data Data being written to, or read from, the USB phy register.

45

Adding the CLD SC594 CDC Library to an Existing CrossCore Embedded
Studio Project
In order to include the CLD SC594 CDC Library in a CrossCore Embedded Studio (CCES) project you

must configure the project linker settings so it can locate the library. The following steps outline how this
is done.

1. Copy thecld_sc594 cdc_lib.handcld_sc594 cdc_lib_Core0.afiles to the project'ssrc directory.
2. Open the project in CrossCore Embedded Studio.
3. Rightclick the project in the 'C/C++ Projects' window and select Properties.

If you cannot find the 'C/C++ Projects™ window, make sure C/C++ Perspective is active. If the
C/C++ Perspective is active and you still cannot locate the 'C/C++ Projects' window select
Window — Show View — C/C++ Projects.

4. Youshould now seea project properties window similar to the one shown below.

Navigate to the C/C++ Build — Settings page and select the CrossCore ARM Bare Metal C
Linker's Libraries page. The CLD SC594 CDC Library needs to be included in the projects
'‘Additional objects'as shown in the diagram below (circled in blue). This lets the linker know
where the cld_sc594 cdc_lib_Core0.a file is located.

46

 Pro perties for CLO_CDC_SC594_Example_wl

type filter text Settings Svy v ow
» Resource
Builders :
w C/C++ Build Gonﬁguration: [All configurations] i % | Manage Configurations...
Build Variables

Environment

Logging & Tool Settings {M Processor Settings .h' Build Steps Build Artifact Binary Parsers @ Er * | *
Settings
Warnings ~ %3 CrossCore ARM Bare Metal Assembler Library search directories (-L): 88085 &
» C/C++ General (& General
Project Matures (%2 Preprocessor
Project References (2 Additional Options
Run/Debug Settings w B3 CrossCore ARM Bare Metal C Compiler
@ General

@ Preprocessor
(2 Warnings
(# Additional Options Additional objects: [2R =R RaRa

w %3 CrossCore ARM Bare Metal C Linker
" ProjDirPath}/src/cld_sc584 cdc_lib_Corel.a")

(22 General

@ Preprocessor

(2 Libraries

(2 Additional Options

Additional libraries (-I): ERAR=RTE|

Link against systern math library (-Im)
[m] Use debug system libraries (-mdebug-libs)

Hover over an option to display its tooltip

Restore Defaults Apply

® Apply and Close Cancel

5. The 'Additional objects' setting needs to be set for all configurations (Debug, Release, etc). This
can be done individually foreach configuration, or all at once by selecting the [All
Configurations] option as shown in the previous figure (circled in orange).

[L

User Firmware Code Snippets

The following code snippets are not complete, and are meant to be a starting point for the User firmware.
For a functional User firmware example that uses the CLD SC594 CDC Library please refer to the CLD
example projects included available with the CLD SC594 CDC Library.

main.c

void main (void)
{
Main States main state = MAIN STATE SYSTEM INIT;

while (1)
{
switch (main state)
{
case MAIN STATE SYSTEM INIT:
/* Initialize the SC594 clock, and power systems.*/

main state = MAIN STATE USER INIT;
break;
case MAIN STATE USER INIT:
rv = user_init();
if (rv == USER_INIT SUCCESS)
{
main state = MAIN STATE RUN;
}
else if (rv == USER INIT FAILED)
{
main_state = MAIN_STATE_ERROR;
}

break;

case MAIN STATE RUN:
user_main ();

break;

case MAIN STATE ERROR:

break;

48

user.c

/*!1< CDC Notification Interrupt IN endpoint parameters. */
static CLD CDC Notification Endpoint Params user_cdc_notification_ep_params =

{
.endpoint_number =4,
.max_packet_size_full_speed = 64,
.polling_interval_full speed =1,
.max_packet_size_high_speed = 64,
.polling _interval high speed = 4,
}s

/* 1ms */

/*1< CDC Serial Data Bulk OUT endpoint parameters. */

static CLD Serial Data Bulk Endpoint Params user_cdc_serial_data_rx_ep_params

{
.endpoint_number =5,
.max_packet_size_full_speed = 64,
.max_packet_size_high_speed = 512,
}s

/*1< CDC Serial Data Bulk IN endpoint parameters.
static CLD Serial Data Bulk Endpoint Params user_cdc_serial_data_tx_ep_params

*/

{
.endpoint_number =5,
.max_packet_size full speed = 64,
.max_packet_size_high_speed = 512,
};

/*!< CLD Library initialization data.
static CLD SC594 CDC Lib Init Params u

{

.vendor id = 0x064b, /* Anal
.product _id = 0x0008,
.usb bus max power = 0,

.device descriptor bcdDevice = 0x0

.phy hs timeout calibration =
.phy fs timeout calibration =

.phy delay req after ulip chirp cmd =

.fp _init usb phy =

.p_serial data rx endpoint params =

.p_serial data tx endpoint params
.p_notification endpoint params

.fp cdc cmd send encapsulated cmd
.fp _cdc cmd get encapsulated resp

.fp _cdc_cmd set line coding
.fp _cdc cmd get line coding

.fp cdc cmd set control line state
.fp cdc cmd send break
.support cdc network connection

.cdc_class _bcd version
.cdc_class control protocol code

/* Product ID.

*/

ser cdc_init params =

og Devices Vendor ID */
*/
100,
0, /* TODO: set based on USB Phy. */
0, /* TODO: set based on USB Phy. */
CLD _TRUE, /* TODO: set based on USB Phy.

user init usb phy,
&user cdc _serial data rx ep params,
= &user cdc serial data tx ep params,

= &user cdc notification ep params,

= user cdc _cmd send encapsulated cmd,
= user cdc_cmd get encapsulated resp,

= user cdc_cmd set line coding,
= user cdc_cmd get line coding,

= user cdc_cmd set control line state,

= user cdc_cmd send break,

=1,
= 0x0120, /* CDC Version 1.2 */
=0, /* No Class Specific protocol

*/

*/

49

/* USB string descriptors - Set to CLD NULL if not required */
.p_usb string manufacturer = "Analog Devices Inc",

.p usb string product "SC594 CDC Device",
.p_usb_string serial number = CLD NULL,

.p_usb string configuration = CLD NULL,

.p _usb string communication class interface = "CLD CDC Ctrl",
.p_usb string data class interface "CLD CDC Data",

.user string descriptor table num entries = 0,
.p_user string descriptor table = CLD NULL,

.usb_string language id = 0x0409, /* English (US) language ID */

/* Function called when a USB events occurs on USB0O. */
.fp cld usb event callback = user usb event,

/* Function called when the CLD library reports a status. */
.fp _cld 1lib status = user cld lib status,

[50 L

User_Init Return_ Code user_init (void)

{

static unsigned char user init state =
CLD RV cld rv = CLD ONGOING;
User Init Return Code init return code

switch (user init state)

{

}

case 0O:

0;

= USER INIT ONGOING;

/* TODO: add any custom User firmware initialization */

user init state++;
break;
case 1:

/* Initialize the CLD Library */
cld _rv = cld sc594_cdc_1lib init(&user_cdc_init params);

if (cld rv == CLD SUCCESS)

{
/* Connect to the USB Host
cld 1ib usb_connect();

*/

init return code = USER INIT SUCCESS;

}
else if (cld rv == CLD FAIL)

{

init return code = USER INIT FAILED;

}
else
{

init return code

}

return init return code;

void user main (void)

{

cld_sc594 _cdc_lib_main () ;

static CLD RV user_init usb phy (void)

{

}

static void user_ usb_event

{

USER_INIT ONGOING;

/* TODO: Reset and configure the USB Phy. */

switch (event)

{

case CLD USB CABLE CONNECTED:
/* TODO: Add any User firmware
break;
case CLD USB CABLE DISCONNECTED:
/* TODO: Add any User firmware
disconnected. */
break;

case CLD USB ENUMERATED CONFIGURED:

/* TODO: Add any User firmware

(CLD_USB_Event event)

processed when a USB cable is connected.

processed when a USB cable 1is

processed when a Device has been

*/

51

enumerated. */
break;
case CLD USB UN CONFIGURED:
/* TODO: Add any User firmware processed when a Device USB Configuration
is set to 0.*/
break;
case CLD USB BUS RESET:
/* TODO: Add any User firmware processed when a USB Bus Reset occurs. */
break;

}

/* Function called when a Send Encapsulated Command request is received */
static CLD USB Transfer Request Return Type user_ cdc_cmd send_encapsulated cmd
(CLD USB Transfer Params * p transfer data)
{
p_transfer data->p data buffer = /* TODO: address to store data */
p transfer data->callback.usb out transfer complete =
- - _ﬁsef:cdc_send:encapsilated_cmd_transfer_complete;
p transfer data->fp transfer aborted callback = /* TODO: Set to User callback
B B B B B function or CLD NULL
*/
/* TODO: Return how the Control transfer should be handled (Accept, Pause,
Discard, or Stall */

}

/* Function called when the Send Encapsulated Command data is received */
static CLD USB Data Received Return Type
user_cdc_send_encapsilated_cmd_transfer complete (void)
{
/* TODO: Return if the received data is good (CLD USB DATA GOOD) or bad
(CLD USB DATA BAD STALL) */
}

/* Function called when a Get Encapsulated Response request is received */
static CLD _USB Transfer Request Return Type user_cdc_cmd_get_encapsulated resp
(CLD USB Transfer Params * p transfer data)
{
p_transfer data->num bytes = /* TODO: Set to size of response */
p transfer data->p data buffer = /* TODO: address to source the response data */
p:transfer:data—>cgllbagk.usb_in_transfer_complete =
user cdc _get encapsulated resp transfer complete;
p_transfer data->fp transfer aborted callback = /* TODO: Set to User callback
function or NULL */
/* TODO: Return how the Control transfer should be handled (Accept, Pause,
Discard, or Stall */

/* Function called when a Get Encapsulated Response has been transmitted */
static void user_cdc_get encapsulated resp transfer_ complete (void)

{
/* TODO: The Get Encapsulated Response data has been sent to the Host, add any

User functionality. */

[52 L

/* Function called when a Set Line Coding Request has been received*/
CLD USB_Data_Received Return Type user_cdc _cmd_set line_ coding
(CLD_CDC_Line Coding * p line coding)
{
if (/* TODO: Check if CDC Line Coding is valid */)
{
/* TODO: Save the requested CDC Line Coding and process it accordingly */
return CLD USB DATA GOOD;
}
else
{
return CLD USB DATA BAD STALL;
}
}

/* Function called when a Get Line Coding Request has been received*/
CLD_RV user_cdc _cmd get_line coding (CLD CDC_Line Coding * p_line_coding)
{ if (/* TODO: Check if Get CDC Line Coding request is valid */)
{
/* TODO: Copy the current CDC Line Coding into the p line coding structure */
return CLD SUCCESS; B B
}
else
{
return CLD FAIL;
}
}

/* Function called when a CDC Set Control Line State Request has been received*/
CLD_USB_Data_ Received Return Type user_cdc_cmd_set control_ line state
(CLD_CDC_Control Line State * p control line state)
{
if (/* TODO: Check if CDC Control Line state is valid */)
{
/* TODO: Process the CDC Control Line State */
return CLD_USB_DATA_GOOD;
}

else
{
return CLD USB DATA BAD STALL;
}
}

/* Function called when a CDC Send Break Request has been received*/
static void user_ cdc_cmd send break (unsigned short duration)
{
/* TODO: Process the requested break duration */
}

static void user_cld lib_status (unsigned short status_code, void * p additional data,
unsigned short additional data size)

/* TODO: Process the library status if needed. The status can also be decoded to
a USB readable string using cld lib status decode as shown below: */

char * p str = cld _lib_status_decode (status code, p additional data,
additional data size);

I —

	Disclaimer
	Introduction
	USB Background
	CLD Library USB Enumeration Flow Chart
	CLD Library Interrupt IN Flow Chart
	CLD CDC Library Bulk OUT Flow Chart
	CLD CDC Library Bulk IN Flow Chart

	CDC Abstract Control Model Background
	CDC Notifications Interrupt IN Endpoint
	Network Connection Notification
	Response Available Notification
	Serial State Notification

	CDC Abstract Control Model Control Endpoint Requests
	Send Encapsulated Command (required)
	CLD CDC Library Send Encapsulated Command Flow Chart

	Get Encapsulated Command (required)
	CLD CDC Library Get Encapsulated Command Flow Chart

	Set Line Coding (optional)
	CLD CDC Library Set Line Coding Flow Chart

	Get Line Coding (optional)
	CLD CDC Library Get Line Coding Flow Chart

	Set Control Line State (optional)
	CLD CDC Library Set Control Line State Flow Chart

	Send Break (optional)
	CLD CDC Library Send Break Flow Chart

	Dependencies
	CLD SC594 CDC Library Scope and Intended Use
	CLD CDC Example v1.02 Description
	Running the Example Project

	CLD SC594 CDC Library API
	cld_sc594_cdc_lib_init
	Arguments
	Return Value
	Details

	cld_sc594_cdc_lib_main
	Arguments
	Return Value
	Details

	cld_cdc_lib_receive_serial_data
	Arguments
	Return Value
	Details

	cld_cdc_lib_transmit_serial_data
	Arguments
	Return Value
	Details

	cld_cdc_lib_send_network_connection_state
	Arguments
	Return Value
	Details

	cld_cdc_lib_send_response_available
	Arguments
	Return Value
	Details

	cld_cdc_lib_send_serial_state
	Arguments
	Return Value
	Details

	cld_cdc_lib_resume_paused_control_transfer
	Arguments
	Return Value
	Details

	cld_lib_usb_connect
	Return Value
	Details

	cld_ lib_usb_disconnect
	Return Value
	Details

	cld_time_125us_tick
	Arguments
	Return Value
	Details

	cld_usb0_isr_callback
	Arguments
	Return Value
	Details

	cld_time_get
	Arguments
	Return Value
	Details

	cld_time_passed_ms
	Arguments
	Return Value
	Details

	cld_time_get_125us
	Arguments
	Return Value
	Details

	cld_time_passed_125us
	Arguments
	Return Value
	Details

	cld_lib_status_decode
	Arguments
	Return Value
	Details

	cld_lib_access_usb_phy_reg
	Arguments
	Return Value
	Details

	Adding the CLD SC594 CDC Library to an Existing CrossCore Embedded Studio Project
	User Firmware Code Snippets
	main.c
	user.c

